सरल लोलक की गति क्या होती है? - saral lolak kee gati kya hotee hai?

भौतिकी में सरल आवर्त गति (simple harmonic motion / SHM) उस गति को कहते हैं जिसमें वस्तु जिस बल के अन्तर्गत गति करती है उसकी दिशा सदा विस्थापन के विपरीत एवं परिमाण विस्थापन के समानुपाती होता है। उदाहरण - किसी स्प्रिंग से लटके द्रव्यमान की गति, किसी सरल लोलक की गति, किसी घर्षणरहित क्षैतिज तल पर किसी स्प्रिंग से बंधे द्रव्यमान की गति आदि।

  • सरल आवर्त गति एक आवर्ती गति (periodic motion) है।
  • वस्तु एक माध्य स्थिति के दोनो तरफ दोलन करती है।

यदि माध्य स्थिति को शून्य विस्थापन माना जाय तो वस्तु का विस्थापन x किसी समय t पर निम्नलिखित समीकरण से व्यक्त किया जा सकता है-

x(t)=Acos⁡(2πft+φ),{\displaystyle x(t)=A\cos \left(2\pi \!ft+\varphi \right),}

जहाँ A आयाम (amplitude), f अवृत्ति (frequency) और φ कला है।

सरल आवर्त गति में गतिमान पिण्ड की आवृत्ति सम्बन्धित निकाय के मूल गुणों (intrinsic properties) पर निर्भर करता है (प्राय: पिण्ड का द्रव्यमान एवं बल नियतांक पर) जबकि आयाम एवं कला आरम्भिक दशाओं (initial conditions) पर निर्भर करती है।

विभिन्न प्रकार की गतियों (जैसे किसी स्प्रिंग से लटके द्रव्यमान का कम्पन) को सरल आवर्त गति के रूप में मॉडल किया जा सकता है। अन्य बहुत सी घटनाओं को सरल आवर्त गति के रूप में सरलीकृत किया जा सकता है। सरल आवर्त गति एक आधार देती है जिसके सहारे इससे भी अधिक जटिल गतियों को फुरिअर विश्लेषण की सहायता से निरूपित किया जा सके।

सरल आवर्त गति का विश्लेषण[संपादित करें]

एकविमीय सरल आवर्त गति के लिये गति का समीकरण न्यूटन के द्वितीय नियम तथा हुक के नियम की सहायता से निकाला जा सकता है। यह समीकरण द्वितीय कोटि वाला, नियत गुणाकों वाला, साधारण अवकल समीकरण है।

Fnet=md2xdt2=−kx,{\displaystyle F_{net}=m{\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-kx,}

जहाँ

अतः,

d2xdt2=−(km)x,{\displaystyle {\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-\left({\frac {k}{m}}\right)x,}

उपरोक्त अवकल समीकरण को हल करने पर इसका हल एक साईन वेव फलन मिलता है जो निम्नलिखित है-

x(t)=c1cos⁡(ωt)+c2sin⁡(ωt)=Acos⁡(ωt−φ),{\displaystyle x(t)=c_{1}\cos \left(\omega t\right)+c_{2}\sin \left(\omega t\right)=A\cos \left(\omega t-\varphi \right),}

where

ω=km,{\displaystyle \omega ={\sqrt {\frac {k}{m}}},}A=c12+c22,{\displaystyle A={\sqrt {{c_{1}}^{2}+{c_{2}}^{2}}},}tan⁡φ=(c2c1),{\displaystyle \tan \varphi =\left({\frac {c_{2}}{c_{1}}}\right),}

इस हल में, c1 और c2 दो नियतांक हैं जिनके मान तंत्र की आरम्भिक स्थिति से निर्धारित होंगे। इसके अलावा मध्यमान स्थिति को ही मूल बिन्दु (ओरिजिन) मान लिया गया है। इन दोनों नियतांकों का भौतिक अर्थ भी है: A आयाम है और ω = 2πf कोणीय आवृत्ति (angular frequency) है तथा φ कला है।


डिफरेंशियल कैलकुलस की तकनीकों का उपयोग करके इस समीकरण से वेग तथा त्वरण का मान निकाला जा सकता है:

v(t)=dxdt=−Aωsin⁡(ωt−φ),{\displaystyle v(t)={\frac {\mathrm {d} x}{\mathrm {d} t}}=-A\omega \sin(\omega t-\varphi ),}a(t)=d2xdt2=−Aω2cos⁡(ωt−φ).{\displaystyle a(t)={\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-A\omega ^{2}\cos(\omega t-\varphi ).}

त्वरण का मान विस्थापन के फलन के रूप में भी व्यक्त किया जा सकता है:

a(x)=−ω2x.{\displaystyle a(x)=-\omega ^{2}x.\!}

चूंकि ω = 2πf,

f=12πkm,{\displaystyle f={\frac {1}{2\pi }}{\sqrt {\frac {k}{m}}},}

और T = 1/f जहाँ T आवर्तकाल है,

T=2πmk.{\displaystyle T=2\pi {\sqrt {\frac {m}{k}}}.}

इन समीकरणों को देखने से स्पष्ट है कि आवृत्ति और आवर्तकाल पिण्ड के आरम्भिक कला तथा आयाम पर निर्भर नहीं हैं।

किसी खूंटी से लटके ऐसे भार को लोलक (लातिन: pendulum) कहते हैं जो स्वतंत्रतापूर्वक आगे-पीछे झूल सकता हो। झूला इसका एक व्यावहारिक उदाहरण है।

आवर्त काल (Period of oscillation)[संपादित करें]

लोलक का एनिमेशन - इसमें लोलक की परिवर्तनशील वेग एवं त्वरण सदिशों को दर्शाया गया है। (v एवं A).

दोलन करता हुआ लोलक किसी एक बिन्दु जितने समय बाद पुनः वापस आ जाता है उसे उसका 'आवर्तकाल' कहते हैं। यदि लोलक का आयाम कम हो तो इसका आवर्तकाल आयाम पर निर्भर नहीं करता बल्कि केवल लोलक की लम्बाई और गुरुत्वजनित त्वरण के स्थानीय मान पर निर्भर होता है। लोलक का आवर्तकाल लोलक के द्रव्यमान पर भी निर्भर नहीं करता।

T≈2πLgθ0≪1(1){\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}\qquad \qquad \qquad \theta _{0}\ll 1\qquad (1)\,}

जहाँ L लोलक की लम्बाई है, तथा g उस स्थान पर गुरुत्वजनित त्वरण का मान है।

इस सूत्र से साफ है कि यदि आयाम (या स्विंग) कम हो तो आवर्तकाल अलग-अलग आयामों के लिये समान होगा। लोलक के इस गुण को 'समकालिकता' (isochronism) कहते हैं। अपने इसी गुण के कारण लोलक का उपयोग समयमापन (timekeeping) में खूब हुआ।

किन्तु यदि आयाम बड़ा है तो आवर्तकाल नियत नहीं रहता बल्कि आयाम बढ़ने पर क्रमशः बढ़ता है। उदाहरण के लिये यदि आयाम θ0 = 23° हो तो आवर्तकाल का मान समीकरण (1) से प्राप्त मान से लगभग १% अधिक होगा।

लोलक के किसी भी आयाम (छोटे या बड़े) के लिये आवर्तकाल का मान निम्नलिखित अनन्त श्रेणी द्वारा दी जाती है-

सरल लोलक की गति क्या है?

लोलक एक निश्चित समय अवधि में दोलन करता है, इसलिए इसकी गति आवर्ती होती है।

सरल लोलक की परिभाषा क्या है?

जब किसी छोटे और भारी पिंड को किसी भारहीन पिंड एवं लम्बाई में न बढ़ने वाले धागे के एक सिरे से पिंड को बांधकर धागे को किसी घर्षण रहित दीवार (छत) से लटका दें। तो इस प्रकार बने समायोजन को सरल लोलक (simple pendulum in Hindi) कहते हैं।

सरल आवर्त गति से क्या तात्पर्य है?

भौतिकी में सरल आवर्त गति (simple harmonic motion / SHM) उस गति को कहते हैं जिसमें वस्तु जिस बल के अन्तर्गत गति करती है उसकी दिशा सदा विस्थापन के विपरीत एवं परिमाण विस्थापन के समानुपाती होता है।

लोलक की गति किसका उदाहरण है?

Solution : दोलन गति का।